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Abstract—In this paper, we present a novel distributed method
to stabilize a set of agents moving in a two dimensional environ-
ment to a desired rigid formation. In our approach, each agent
computes its control input using the relative positions of a set
of formation neighbors but, contrary to most existing works,
this information is expressed in the agent’s own independent
local coordinate frame, without requiring any common reference.
The controller is based on the minimization of a Lyapunov
function that includes locally computed rotation matrices, which
are required due to the absence of a common orientation.
Our contribution is that the proposed distributed coordinate-
free method achieves global stabilization to a rigid formation
with the agents using only partial information of the team,
does not require any leader units, and is applicable to both
single-integrator or unicycle agents. To guarantee global stability,
we require that the network induced by the agent interactions
belongs to a certain class of undirected rigid graphs in two
dimensions, which we explicitly characterize. The performance
of the proposed method is illustrated with numerical simulations.

Index Terms—Distributed control, multi-agent systems, forma-
tion stabilization, autonomous mobile robots.

I. INTRODUCTION

Teams of mobile agents capable of autonomous percep-
tion, localization, and navigation, can be used to address
diverse application scenarios, such as environment surveil-
lance, mapping, exploration, or search and rescue missions,
among others. In this paper, we study multiagent formations,
which are fundamental to the emergence of many interesting
group behaviors. We address, in particular, the problem of
distributed formation stabilization [1]. Our goal is to ensure
that the positions of a set of mobile agents moving in a two-
dimensional space form a desired rigid shape, defined up to
translation and rotation.

A formation is often specified by a set of absolute po-
sitions attained by the agents in a team [2]–[6]. In this
case, controlling the formation requires the use of global
positioning sensors (e.g., GPS) on board the agents, or an
external localization system. Nevertheless, the availability of
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such localization systems is often difficult to ensure as, e.g.,
in the case of agents that operate indoors, where GPS signal
is poor. These limitations can be overcome by using relative
measurements, as is done in the so-called relative position-
based formation stabilization methods [7]–[13]. Still, though,
these methods need the agents to have a common sense of
orientation. Position-based approaches use linear consensus-
based control laws, and ensure global stabilization if the graph
that models the interactions between agents (the formation
graph) is connected. Some of the cited works that use relative
measurements assume the common orientation reference is
available via sensing, whereas others such as [10], [13] need
the agents to agree upon, and subsequently maintain, this
required global orientation in a decentralized manner [14].

Relaxing this need for a common sense of orientation is
important as it can enhance flexibility of the system by, e.g.,
permitting operation in GPS-denied environments. Moreover,
it can reduce the dependence on complex and expensive sens-
ing and increase the agents’ autonomy by enabling them to rely
only on low-cost, on-board sensors that do not provide any ab-
solute position or orientation information. In this paper, unlike
in all the works cited above, we assume such a coordinate-free
scenario, where the agents plan their motion relying only on
their own independent local coordinates. Similar frameworks
that do not require global references have been considered
recently in relevant literature on formation stabilization. Next,
we review these methods and discuss the differences with our
proposed approach. A recent survey of formation controllers
focusing on their information requirements and the topology
of agent interactions employed can be found in [15].

The method in [16] uses relative pose (i.e., position and
orientation) information and considers mobile platforms whose
positions and orientations are controlled in a decoupled fash-
ion. Then, for general connected undirected formation graphs,
the formation is globally stabilized via two separate consensus-
based control laws. In contrast, we assume the agents have
single-integrator or unicycle kinematics, and we employ only
relative position information. Works that consider relative
information commonly specify the formation via interagent
distances only, to avoid the difficulty of dealing with inconsis-
tent (i.e., expressed in unaligned frames) position coordinates.
This is the approach followed in distance-based formation
stabilization methods [17]–[22]. When applied to rigid-shape
stabilization problems for arbitrary numbers of agents, these
strategies require the formation graph to be rigid [23] and
provide only local stability guarantees. Global stabilization to
a rigid shape poses significant challenges for these approaches;
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indeed, as shown in [18], [24], distance-based global formation
stabilization is infeasible using gradient descent controllers,
which are the most common in the literature. Distance-based
schemes require exactly the same information as the method
we propose, as knowledge of the directions to the neighboring
agents is needed to compute the motion vectors. However,
compared to these methods, our approach is globally stable.

Global stabilization to a rigid formation shape using only
relative position information expressed in independent local
coordinate frames, as in our method, has been achieved by re-
lying on leader agents. Specifically, the distance-based method
in [20] achieves global stability for a triangularized graph
structure with two leaders. In [25], local relative positions
(not just distances) are used in a linear control law based
on the complex Laplacian matrix of the formation graph. For
a 2-rooted undirected graph, the method globally stabilizes
a rigid formation, using two leader agents to fix its scale.
Unlike [20], [25], our approach is leaderless. This provides
advantages in terms of flexibility and robustness, since it
prevents the team’s performance from relying heavily on the
leaders which, in addition, operate without feedback from the
other agents. The work [26] presents a distance-based modified
gradient controller where all the agents share a common clock
(contrary to our approach) and each adds to its control input an
adaptive time-parameterized perturbation. Then, global rigid-
shape stabilization is obtained if the formation graph is rigid
and no two agents are co-located initially. In the context of
formation control, unicycle-type agents are important from
a practical perspective [3], [5]–[7], [9], [18], [27]–[30] but
introduce additional challenges due to the nonholonomic con-
straints that restrict their executable motions. To the best
of our knowledge, none of the existing distributed, globally
convergent, coordinate-free rigid formation controllers [16],
[20], [25], [26] considers unicycle-type agents. To the contrary,
our method is directly applicable for this kinematics. We
also note that some formation control schemes use camera-
equipped external units to compute the commands [29]–[31].
In particular, [30] employs multiple partial information-based
least-squares image transformations to create the formation.
However, as they rely on centralizing external units, this group
of methods are neither distributed nor coordinate-free.

The method we propose in this paper stabilizes a group
of agents to a rigid shape, using the relative positions of
each agent’s formation graph neighbors, expressed in local
coordinate frames. We capture this control objective by the
minimizer of a Lyapunov function that includes this relative
position information in full (contrary to distance-based meth-
ods), and propose a gradient descent controller that allows us
to globally achieve this minimum configuration. Specifically,
the proposed Lyapunov function is the sum of cost functions
associated with maximal cliques, i.e., groups of mutually
adjacent agents, in the formation graph. Due to the lack of
a shared orientation reference, our Lyapunov function neces-
sarily contains rotation matrices acting on the local relative
position vectors, which makes the system dynamics nonlinear.
The key idea that enables our approach is to define these
rotations as minimizers of the cost functions associated with
every maximal clique, and then substitute these expressions in

the proposed gradient descent controllers, for which we show
that they ensure global stability both for single-integrator and
unicycle-type agents. Global stability guarantees require an
interaction topology modeled by a class of undirected rigid
graphs in two dimensions, which we explicitly characterize.
For this class of graphs, in our distributed method each agent
computes locally its motion commands, maintains interactions
(via sensing or communications) only with its formation graph
neighbors, and requires only partial information (specifically,
the relative positions of its formation graph neighbors) of the
team.

Let us summarize our contribution: to the best of our
knowledge, this paper proposes for the first time a method for
distributed rigid-shape formation stabilization that uses only
locally expressed relative position measurements (i.e., without
any common reference), requires each agent to know only
partial information of the group, and is globally convergent,
leaderless, and applicable for unicycle kinematics. Existing
works enjoy a subset of these properties, but not all of
them, as discussed in the literature review presented above.
Furthermore, an important aspect of our contribution is that we
provide a characterization of specific topological conditions
for which global stability is ensured. Our related works [32],
[33] address coordinate-free formation control and, as we do
here, employ rotation matrices computed locally by the agents.
However, contrary to the work we present, in both of these
prior methods the agents employ global information. [33] uses
multi-hop communication that is subject to time delays to
propagate the necessary global information to all the agents in
the network in a distributed way, while [32] addresses a target
enclosing task with agents that move in 3D space.

The contents of the paper are structured as follows. Section
II introduces the problem we address and provides necessary
background regarding several graph-theoretic concepts. In Sec-
tion III, we describe the proposed multiagent control strategy,
in which the motion commands are locally computed by each
of the agents. Section IV presents the stability analysis of our
method. We discuss in Section V the class of formation graphs
for which the controller is ensured to be stable. Section VI
describes results from simulations carried out to evaluate our
approach. Finally, the conclusion of the paper and directions
for future work are presented in Section VII.

II. PROBLEM FORMULATION AND BACKGROUND

Consider a group of N mobile agents in R2. Let us denote,
in an arbitrary global reference frame, the position of agent
i, i = 1, ..., N , as qi = [qxi , q

y
i ]

T ∈ R2 and its orientation as
ϕi ∈ R. We assume each agent i obeys unicycle kinematics,
as follows:

q̇xi = −vi sinϕi, q̇yi = vi cosϕi, ϕ̇i = −ωi, (1)

where vi ∈ R is its linear velocity input and ωi ∈ R is
its angular velocity input. We will additionally consider the
single-integrator model, where the orientation of each agent
is not relevant and its dynamics is determined by a velocity
input ui ∈ R2:

q̇i = ui. (2)
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We define a desired configuration, or formation shape, by a
certain, fixed, reference layout of the positions of the N agents
in their configuration space. The way in which we encode the
desired configuration is through a set of interagent relative
position vectors. To model the interactions between agents,
we define a static undirected formation graph Gf = (V, E),
as is typical in related work on formation control, e.g., [20],
[25], [26]. Each node in V is associated with an agent, and
we assume that each agent can obtain, using its sensing
or communication capabilities, an estimate of the relative
positions of its fixed set of neighbors in Gf .

Then, for every neighbor j of agent i, we denote as cji ∈ R2

the vector from i to j in the reference layout of the agents
that defines the desired configuration. The agents are not
interchangeable, i.e., each of them has a fixed place in the
target formation. We then consider that the N agents are in the
desired configuration if the reference layout has been achieved,
up to an arbitrary rotation and translation, i.e., if it holds that:

qji = Rcji, ∀i, j = 1, ..., N, (3)

where we define qji = qj−qi, and R ∈ SO(2) is an arbitrary
rotation matrix. Thus, the problem that we set out to solve in
this paper is specified as follows:

Problem 1. Given an initial configuration in which the agents
are in arbitrary positions, find a control strategy that stabilizes
them in a set of final positions such that the group is in the
desired configuration.

A. Graph theory

Next, we discuss a series of definitions relevant to undi-
rected graphs that are used throughout the paper. A clique
in a graph G is a complete subgraph, i.e., a subset of its
nodes and edges such that every two nodes are adjacent. An
n-node clique is a clique containing n nodes. A maximal
clique is one that cannot be augmented by incorporating one
more node. The intersection of two cliques is given by the
sets of nodes and edges they share. The p-clique graph, with
p ≥ 1, of G, denoted as Cp(G), is a graph whose nodes are
the maximal cliques of G, and where two nodes are adjacent
if the intersection of their associated cliques contains at least
p nodes [34]. A graph is called a tree if any two of its nodes
are connected by exactly one sequence of edges. A leaf in a
tree graph is a node of degree one. An induced subgraph of
G is a graph that includes a subset of its nodes and all those
edges of G that join two nodes in the subset.

III. CONTROL STRATEGY

Let us assume there are M maximal cliques in Gf . For
m = 1, ...,M , we denote as Im the set of indices of the
nodes that form the m− th clique, and Nm = card(Im). We
interchangeably refer in the paper to the nodes of Gf as nodes
or agents. We define, in an arbitrary global coordinate frame,
the following cost function for each maximal clique:

γm =
1

2Nm

∑
j∈Im

||
∑
k∈Im

qjk −Rmcjk||2, (4)

Fig. 1. An arbitrary formation graph Gf with N = 17 nodes and M = 10
maximal cliques, denoted as Km, m = 1, ...,M . The size of the maximal
cliques ranges from two to five nodes. For instance, K1 contains two agents,
K3 contains three agents, K4 contains four, and K9 consists of five agents.
Trivial single-node maximal cliques, which would represent isolated nodes
of Gf , are not contemplated. Our formation controller is based on the
minimization of a global cost function γ that is the aggregate of partial
functions γm associated with the maximal cliques. Each agent operates on the
set of maximal cliques it belongs to, e.g., the motion of agent i pursues the
minimization of the sum of γ3, γ4, and γ9, for which it uses the knowledge
of the locally expressed relative positions of its neighbors in Gf . To ensure
stabilization to a rigid formation, Gf must satisfy certain rigidity-related
conditions, as explained throughout the paper.

where Rm ∈ SO(2) is a rotation matrix whose value, equal
for all the agents in the clique, is discussed in the following
section. Note that, for simplicity of the notation, we include
in (4) the null terms occurring when j = k. Now, observe
that if γm = 0, we can write, considering in (4) the addends
associated with two given agents j = i1 and j = i2:∑
k∈Im

qi1k −Rmci1k = 0,
∑
k∈Im

qi2k −Rmci2k = 0. (5)

Subtracting the two equations, we have that qi1i2 = Rmci1i2 ,
which holds for every pair i1, i2 in Im. Hence, if γm = 0,
the subset of agents in the m − th clique are in the desired
configuration with one another (we will refer to this as a sub-
formation). We can then see that γm encodes how distant the
agents are from reaching the m− th sub-formation. We define
the global cost function for our system as follows:

γ =
∑

m=1,...,M

γm, (6)

so that if γ vanishes, all the sub-formations are attained. Note
that every node and every edge of Gf are part of one or
multiple maximal cliques. Thus, if {i, j} ∈ E , the relative
vectors between i and j contribute to at least one γm (4). This
means that, by encompassing all the M maximal cliques, the
global function γ captures all the edges in Gf . An illustration
of the structure of maximal cliques that is the basis of our
controller is provided in Fig. 1.

A. Rotation matrices

We set out to drive γ to zero, which implies doing so for
every γm. Accordingly, the rotation matrix in each function
γm (4) is chosen so as to minimize it, as shown next. Let us
note that the analysis in this section is analogous to finding
the solution to the orthogonal Procrustes problem [35].
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We define Rm as a rotation by an angle αm, i.e.,:

Rm =

[
cosαm − sinαm

sinαm cosαm

]
. (7)

Let us express γm in terms of αm and the components of the
relative position vectors, qjk = [qxjk, q

y
jk]

T , cjk = [cxjk, c
y
jk]

T :

γm =
1

2Nm

∑
j∈Im

[
(
∑
k∈Im

qxjk − cxjk cosαm + cyjk sinαm)2 (8)

+(
∑
k∈Im

qyjk − cxjk sinαm − cyjk cosαm)2
]
.

Let us introduce the notation: Sqj = [Sx
qj , S

y
qj ]

T =∑
k∈Im

qjk and Scj = [Sx
cj , S

y
cj ]

T =
∑

k∈Im
cjk. To minimize

γm with respect to αm, we solve ∂γm

∂αm
= 0. After manipula-

tion, this derivative is:
∂γm
∂αm

=
1

Nm

[
sinαm

∑
j∈Im

(Sx
qjS

x
cj + Sy

qjS
y
cj)

− cosαm

∑
j∈Im

(−Sx
qjS

y
cj + Sy

qjS
x
cj)

]
. (9)

Then, the condition ∂γm

∂αm
= 0 is expressed as:

sinαm

∑
j∈Im

ST
qjScj − cosαm

∑
j∈Im

ST
qjS

⊥
cj = 0, (10)

where the superscript ⊥ denotes a rotation of a vector by π/2
radians, as follows: S⊥

cj = [(0, 1)T , (−1, 0)T ]Scj. Solving (10)
with respect to the rotation angle αm, we get:

αm = arctan

∑
j∈Im

ST
qjS

⊥
cj∑

j∈Im
ST
qjScj

. (11)

Observe from (11) that there are two possible solutions for
αm, separated by π radians. In order to select the correct one,
we compute the second order derivative from (9):

∂2γm
∂α2

m

=
1

Nm

[
cosαm

∑
j∈Im

ST
qjScj + sinαm

∑
j∈Im

ST
qjS

⊥
cj

]
. (12)

By considering together (10) and (12), it can be readily seen
that one of the solutions for (11) minimizes γm, while the
other maximizes the function. The solution that is a minimum
satisfies the condition ∂2γm

∂α2
m

> 0. If we isolate the term
cosαm in (10) and then substitute it in (12), we easily get
that this condition holds when sin(αm)/

∑
j∈Im

ST
qjS

⊥
cj > 0,

i.e., sin(αm) must have the same sign as the numerator in
the arctan function in (11). This implies that, among the two
possible values of αm, the one that minimizes γm, i.e., the
value used in our controller, is given by:

αm = atan2(
∑
j∈Im

ST
qjS

⊥
cj,

∑
j∈Im

ST
qjScj), (13)

where the atan2 function returns the solution of (11) for
which αm is in the quadrant that corresponds to the signs
of the two input arguments. Note that the case atan2(0, 0),
for which αm is not defined, is theoretically possible in (13)
for degenerate configurations of the agents’ positions where
γm is constant for all αm, see (10). In general terms, the
singular or degenerate cases are linked to the desired geometry

and not to our control strategy. Multiple agents occupying the
same position is another particular example of a degenerate
arrangement. All these possible configurations are measure
zero, i.e., they will never occur in practice and, therefore, we
do not consider them in our analysis.

B. Control law

Our controller is based on each agent i following the
negative gradient of the cost function γ with respect to qi.
Let us look at one given clique, m, that contains agent i. We
have:

∇qi
γm =

∂γm
∂αm

∂αm

∂qi
+

∂γm
∂qi

=
∂γm
∂qi

, (14)

given that, as discussed in Section III-A, ∂γm

∂αm
= 0. Thus, we

focus next on the partial differentiation with respect to qi. For
clarity of the exposition, let us express γm (4) as a sum of
components:

γm =
∑
j∈Im

γmj , γmj =
1

2Nm
||
∑
k∈Im

qjk −Rmcjk||2. (15)

For the component corresponding to j = i, we have:

∂γmj

∂qi
=

∂γmi

∂qi
=

1

Nm

∑
k∈Im

(qi − qk −Rmcik)(Nm − 1)

= (1− 1

Nm
)
∑
k∈Im

(qik −Rmcik), (16)

whereas each of the components in (15) such that j ̸= i gives:

∂γmj

∂qi
=

1

Nm

∑
k∈Im

(qj − qk −Rmcjk)(−1)

=
−1

Nm

∑
k∈Im

(qjk −Rmcjk). (17)

From (15), and substituting and grouping (16) and (17), we
get:

∂γm
∂qi

=
∂γmi

∂qi
+

∑
j∈Im
j ̸=i

∂γmj

∂qi

=
∑
k∈Im

(qik −Rmcik)−
1

Nm

∑
j∈Im

∑
k∈Im

(qjk −Rmcjk).

(18)

Observe now that:∑
j∈Im

∑
k∈Im

qjk = Nm(
∑
j∈Im

qj−
∑
k∈Im

qk) =
∑
j∈Im

∑
k∈Im

cjk = 0.

(19)
Substituting (19) in (18) and then renaming the index k as j,
for convenience, we finally get:

∂γm
∂qi

=
∑
j∈Im

qij −Rmcij. (20)

Let us denote, for every agent i, the set of maximal cliques
to which it belongs as Ci, i = 1, ..., N . Note that, clearly,
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∂γm

∂qi
= 0 if m is not in Ci. We can now differentiate the

global cost function (6). Substituting (14) and (20), we have:

∇qi
γ =

∑
m=1,...,M

∇qi
γm

=
∑

m=1,...,M

∂γm
∂qi

=
∑
m∈Ci

∑
j∈Im

qij −Rmcij

 . (21)

Let us define the partial desired motion vector for agent i due
to clique m as:

dim =
∑
j∈Im

qji −Rmcji. (22)

Negating the gradient in (21), we obtain what we will call the
desired motion vector for agent i, di, which equals the sum
of partial desired motion vectors dim over the cliques in Ci:

di = −∇qi
γ =

∑
m∈Ci

∑
j∈Im

qji −Rmcji

 =
∑
m∈Ci

dim . (23)

Considering single-integrator kinematics, we propose to define
each agent’s control input directly as:

ui = q̇i = kcdi, (24)

where kc > 0 is a control gain. If, instead, the agents have
unicycle kinematics, we define βi as the angular alignment
error, measured in the interval (−π, π], between agent i′s
current heading and the direction of its desired motion vector
(see Fig. 2, left). If di = 0, we define βi = 0. Then, we
propose the following control law: vi =

{
kv||di||, if |βi| < π

2
0, if |βi| ≥ π

2
ωi = kωβi,

(25)

where kv > 0 and kω > 0 are control gains. Observe that
when |βi| ≥ π

2 , the agent only rotates in place and does not
translate.

C. Information requirements
Let us specify the information that a given agent needs so

as to compute its control input.
Note that the control laws above define a distributed system

which relies on the use of only partial information of the
multiagent team. For each agent i, its control input is obtained
using only the knowledge of di, which is obtained, (23), (13),
from the relative position vectors corresponding to the agents
belonging to the cliques in Ci, i.e., the agents which are neigh-
bors of i in Gf . That is, defining Ni as i′s set of formation
graph neighbors, agent i needs to know the measurements
qji, ∀j ∈ Ni. In particular, note that i can directly compute,
by itself, the rotation angles αm (13) for m ∈ Ci by using
these measurements. It is clear that agent i also has to know the
labels, or identifications, of its neighboring agents. In addition,
it needs the local structure of the formation graph, i.e., which
agents form each of the maximal cliques i belongs to. In our
notation: Im for m ∈ Ci.

Finally, note that agent i only needs to know the above
quantities expressed in its own independent local coordinates,
as explained in the next section.

Fig. 2. Left: Depiction of the variables used in our controller for an agent
i with unicycle kinematics. Right: Representation of the quantities used to
compute i′s control law, expressed in an arbitrary global frame G. Three
agents i, j and k in a maximal clique m are depicted, and the local frame L
of i is shown.

D. Computation of the control inputs in the local frames

A central property of the method we propose is that each
agent can compute its control input in the absence of a global
orientation reference, as shown next. We denote as θi the
rotation angle between the arbitrary global frame and the local
frame in which agent i operates, and by Pi(θi) ∈ SO(2)
the corresponding rotation matrix. Let us now write down the
partial desired motion vector for clique m (the analysis can be
trivially extended to the desired motion vectors di) computed
locally by i (22), using a superscript Li to denote that the
quantities are expressed in i′s local frame:

dLi
im =

∑
j∈Im

qLi
ji −RLi

mcji. (26)

Let us show how the rotation matrices computed in the global
and local frames are related. We recall (4), which expresses
γm in an arbitrary global frame:

γm =
1

2Nm

∑
j∈Im

||
∑
k∈Im

qjk −Rmcjk||2. (27)

Agent i minimizes the cost function expressed in its local
frame, i.e., γLi

m . Given that qLi
jk = Piqjk for all j, k ∈ Im, we

can write, using simple manipulation:

γLi
m =

1

2Nm

∑
j∈Im

||
∑
k∈Im

qLi
jk −RLi

mcjk||2 =

1

2Nm

∑
j∈Im

||
∑
k∈Im

qjk −P−1
i RLi

mcjk||2. (28)

Given that Rm minimizes γm and RLi
m minimizes γLi

m , and
this minimum is unique (Section III-A), we clearly have from
(27) and (28) that γm = γLi

m and hence Rm = P−1
i RLi

m , i.e.,
RLi

m = PiRm. Thus, from (26):

dLi
im =

∑
j∈Im

qLi
ji −RLi

mcji =
∑
j∈Im

Piqji−PiRmcji = Pidim ,

(29)
which means that the computations referred to the two frames
give an identical desired motion vector. Figure 2 (right)
illustrates the variables used by the controller with respect
to the global and local frames.
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IV. STABILITY ANALYSIS

In this section, we study the stability of the proposed control
strategy. Throughout the section, we assume Gf to be a static
graph. Note that, unless otherwise stated, all the entities in the
Euclidean plane are expressed in an arbitrary global reference
frame. Our control methodology, described in the previous
section, is based on minimizing a cost function (6) defined over
the set of maximal cliques in the formation graph. We present
a stability analysis that relies on a description of this graph
in terms of its maximal-clique intersection sets. Specifically,
we use 2-clique graphs to capture these intersections. Let us
denote the 2-clique graph of Gf as C2(Gf ) = (VC2 , EC2). We
will refer equivalently to the maximal cliques of Gf or to the
nodes of C2(Gf ). Consider the following assumption:
A1) C2(Gf ) is connected.
Observe that this assumption immediately implies that there
cannot be maximal cliques of size one or two in Gf . Therefore,
every agent is in at least one 3-node clique of Gf . Figure 3
shows an example Gf for which A1 is satisfied, and its 2-clique
graph.

Theorem 1. If A1 holds, the multiagent system under the
control laws (24), for single-integrator kinematics, or (25),
for unicycle kinematics, is locally stable with respect to the
desired configuration.

Proof. We will use Lyapunov analysis to prove the stability
of the system. Let us define a Lyapunov candidate function as
V = γ. It is straightforward to see that V is positive semi-
definite and radially unbounded. In addition, the equilibrium
V = 0 occurs if and only if the N agents are in the desired
configuration, as shown next.

Let us assume the agents are in the desired configuration
and see that this leads to V = 0. Observe that this situation
implies that for every pair i, j in 1, ..., N , qij = Rcij, where
R expresses the rotation of the formation pattern (3). Since
this holds for every pair of agents, notice in (4) that γm is
zero, i.e., has its minimum possible value, ∀m = 1, ...,M ,
if Rm = R. Clearly, since every Rm must be such that its
associated γm is minimum (Section III-A), we have that all
of the rotations are equal to R. Thus, V = γ = 0.

On the other hand, assume V = 0, which implies, since
γm = 0 ∀m = 1, ...,M , that all the sub-formations for
each of the M maximal cliques have been achieved (Section
III). Note, however, that this does not imply, in general, that
the agents are in the global desired formation. To guarantee
this, we use assumption A1 next. Note that the assumption
implies that the agents form a structure of maximal cliques
which have, at least, three nodes each, and for every maximal
clique m1, there exists at least one other maximal clique
m2 such that m1 and m2 have at least two agents in com-
mon. Then, consider two given agents i, j which are in the
intersection of two given cliques m1 and m2. It is clear,
since γ = 0, that qij = Rm1cij = Rm2cij and, therefore,
Rm1 = Rm2 . Now, due to connectedness of C2(Gf ), this
equality can be trivially propagated throughout the M maximal
cliques. Thus, Rm = R ∀m = 1, ...,M , which means that
qij = Rcij ∀i, j = 1, ..., N , i.e., the N agents are in the

Fig. 3. Illustration of 2-clique graphs, which are used in the topological
characterizations provided in the paper. Left: a given formation graph Gf ,
with maximal cliques Km, m = 1, ..., 11. Right: the 2-clique graph of Gf ,
C2(Gf ), which is connected (i.e., the topology satisfies assumption A1.)

desired configuration. After showing that V = 0 provides
a characterization of the desired formation, we study next
the stability of the system by analyzing the dynamics of V .
Notice that, given the negative gradient-based control strategy
expressed in (23), we can write:

V̇ =
∑

i=1,...,N

(∇qi
V )T q̇i = −

∑
i=1,...,N

dT
i q̇i. (30)

Then, considering our controller for single-integrator kinemat-
ics (24), we have, by direct substitution:

V̇ = −kc
∑

i=1,...,N

||di||2 ≤ 0. (31)

Let us now consider unicycle kinematics. We denote as Sv the
time-varying set of agents for which it holds that |βi| < π/2.
Since the displacement of a unicycle agent always occurs along
the direction of its current heading, we have in our case that,
from the linear velocity in (25), the motion vector executed
by each agent i (see Fig. 2) is:

q̇i =

{
kvQ(βi)di, i ∈ Sv

0, i ̸∈ Sv,
(32)

where Q(βi) ∈ SO(2) expresses a rotation by the angular
alignment error. Then, substituting (32) in (30):

V̇ = −kv
∑
i∈Sv

cos(βi)||di||2 +
∑
i̸∈Sv

(0) ≤ 0, (33)

where the condition that V̇ can never be positive results
from the fact that |βi| < π/2 ∀i ∈ Sv, i.e., cos(βi) >
0 ∀i ∈ Sv . By virtue of the global invariant set theorem,
(31) and (33) ensure that, under the proposed control laws
for single-integrator (24) or unicycle (25) kinematics, the
system converges asymptotically to the largest invariant set
in the set W = {qi, i = 1, ..., N | V̇ = 0}. Therefore, it can
be concluded that the multiagent system is locally stable with
respect to the desired formation (i.e., V = 0).

Corollary 1. If A1 is satisfied, then all stable equilibriums
of the multiagent system under the controllers for single-
integrator (24) or unicycle (25) kinematics are static configu-
rations, and occur if and only if di = 0 ∀i = 1, ..., N .



7

Proof. By a stable equilibrium we precisely mean a configu-
ration that the system will not get out of, i.e., a configuration
for which it holds that V̇ = 0 for all time. Let us examine
these equilibriums. We look at the controller for single-
integrator agents first. We immediately see from (31) that
V̇ = 0 ⇔ di = 0 ∀i = 1, ..., N . If all di are null, all
the agents are static, see (24). This also clearly implies the
equilibrium is stable. Thus, the statement of the Corollary
holds. For unicycle kinematics, suppose V̇ = 0 at some
instant. Notice from (33) that this implies di = 0 ∀i ∈ Sv .
These agents are static (25). However, it is possible that for
some of the agents not belonging to Sv , di ̸= 0. Assume
this is the case. Note that even if their desired vectors are
not null, the agents not in Sv can never translate, due to
the linear velocity defined in (25). As a result, we have that
V̇ = 0 implies that none of the N agents’ positions, qi, can
change. Therefore, from (23), no di can change. The vectors
di being constant implies that every agent not belonging to
Sv such that its di ̸= 0 will rotate in place, thanks to the
angular velocity control in (25), seeking to align itself with
the direction of its constant di. This will eventually lead, at
some time instant, to |βi| < π/2 for one of these agents, i.e.,
cos(βi) > 0 and, given that di ̸= 0, to V̇ < 0 (33), i.e., the
assumed equilibrium is not stable. Hence, we can conclude
that if the system is in a stable equilibrium, i.e., V̇ = 0 for all
time, it must hold that di = 0 ∀i = 1, ..., N . The converse
statement di = 0 ∀i = 1, ..., N ⇒ V̇ = 0 for all time is
immediate to see from equation (33) for unicycle kinematics.
In addition, observe from (25) that all di being null implies
that the unicycle agents are static, i.e., the stable equilibrium
is a static configuration.

Following the discussion above on local stability results for
our system, let us now start the study of global convergence
by presenting a Lemma that will be useful in the subsequent
development.

Lemma 1. Let m1 and m2 be two maximal cliques of Gf

corresponding to two adjacent nodes in C2(Gf ). Assume the
following conditions are satisfied:

L1) di = 0, i = 1, ..., N.
L2) card(Im1

∩
Im2) = 2, denote Im1

∩
Im2 = {i1, i2}.

L3) Ci = {m1,m2}, i = i1, i2.
L4) dim1

= 0, ∀i ∈ Im1 , i ̸= i1, i ̸= i2.
Then, it holds that dim1

= 0 ∀i ∈ Im1 , di1m2
= di2m2

= 0,
the rotation matrices in (7) satisfy Rm1 = Rm2 , and γm1 (4)
is zero.

Proof. Let us choose, without loss of generality, the global
reference frame for which Rm1 = I2, i.e., αm1 = 0 (13).
Considering L1 and L4, we can write, using (23):

di = dim1
=

∑
j∈Im1

qji − cji = 0,∀i ∈ Im1 , i ̸= i1, i ̸= i2. (34)

Let us use that qji = −qij, cji = −cij and interchange the
names of the subscripts j and i in (34), to obtain:∑

i∈Im1

qji =
∑

i∈Im1

cji, ∀j ∈ Im1 , j ̸= i1, j ̸= i2. (35)

Imposing the condition αm1 = 0 in (13), we can write:∑
j∈Im1

ST
qj,m1

S⊥
cj,m1

=

∑
j∈Im1

j ̸=i1,j ̸=i2

ST
qj,m1

S⊥
cj,m1

+
∑

j=i1,i2

ST
qj,m1

S⊥
cj,m1

= 0, (36)

where the sums are for the clique m1, i.e.,: Sqj,m1 =∑
i∈Im1

qji, Scj,m1 =
∑

i∈Im1
cji. Observe that, due to (35),

Sqj,m1 = Scj,m1 ∀j ∈ Im1 , j ̸= i1, j ̸= i2. Thus, each of the
addends in the first summation in the second line of (36) is a
dot product of two orthogonal vectors, and therefore vanishes.
Then, we have:∑
j=i1,i2

ST
qj,m1

S⊥
cj,m1

= ST
qi1,m1

S⊥
ci1,m1

+ ST
qi2,m1

S⊥
ci2,m1

=∑
i∈Im1

qT
i1i

∑
i∈Im1

c⊥i1i +
∑

i∈Im1

qT
i2i

∑
i∈Im1

c⊥i2i = 0. (37)

Let us now focus on agents i1 and i2 and find constraints on
their desired motion vectors which, along with the condition
in (37), will lead to our result. From L3, these two agents
belong to cliques m1 and m2 only and, due to L1, we have:

di1 = di1m1
+ di1m2

= 0

di2 = di2m1
+ di2m2

= 0. (38)

Observe that the sum of partial desired vectors for any given
clique is null, as can be directly seen by considering the
expression for the partial vectors in (22), and using equation
(19), as follows:∑
i∈Im

dim =
∑
i∈Im

∑
j∈Im

qji −Rmcji = 0, m = 1, ...,M. (39)

Consider the above condition for clique m = m1 in particular.
Due to L4, its sum of vectors includes only agents i1 and i2.
Thus: ∑

i∈Im1

dim1
= di1m1

+ di2m1
= 0, (40)

an expression which will be useful later on in the proof.
Observe now, from (22), that:

dim1
=

∑
j∈Im1

qji − cji, i = i1, i2. (41)

dim2
=

∑
j∈Im2

qji −Rm2cji, i = i1, i2. (42)

Interchanging the subscripts i and j in (41), and then express-
ing the equations for j = i1 and j = i2 separately, we can
write: ∑

i∈Im1

qi1i = −di1m1
+

∑
i∈Im1

ci1i∑
i∈Im1

qi2i = −di2m1
+

∑
i∈Im1

ci2i. (43)
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Analogously, from (42), we obtain:∑
i∈Im2

qi1i = −di1m2
+Rm2

∑
i∈Im2

ci1i∑
i∈Im2

qi2i = −di2m2
+Rm2

∑
i∈Im2

ci2i. (44)

Now, by substituting (43) in (37), we have:

dT
i1m1

∑
i∈Im1

c⊥i1i + dT
i2m1

∑
i∈Im1

c⊥i2i = 0, (45)

and using in (45) that, from (40), di1m1
= −di2m1

, gives:

dT
i1m1

(
∑

i∈Im1

c⊥i1i − c⊥i2i) = dT
i1m1

c⊥i1i2 = dT
i2m1

c⊥i1i2 = 0. (46)

Observe that (46) indicates that di1m1
and di2m1

are parallel
to ci1i2 . We can then write:

di1m1
− di2m1

= k12ci1i2 , (47)

and, substituting (38) in (47):

di1m2
− di2m2

= −k12ci1i2 , (48)

for some scalar k12. We now define d′
im

= dim/Nm, i =
i1, i2, m = m1,m2. Notice that subtracting the two equations
in (43), we have:

qi1i2 = −d′
i1m1

+ d′
i2m1

+ ci1i2 . (49)

Then, substituting (47) yields:

qi1i2 = (1− (k12/Nm1))ci1i2 . (50)

On the other hand, subtraction of the equations in (44) gives:

qi1i2 = −d′
i1m2

+ d′
i2m2

+Rm2ci1i2 , i.e.,

qi1i2 + d′
i1m2

− d′
i2m2

= Rm2ci1i2 . (51)

Substituting (48) and (50) in the left-hand side of (51) yields:

(1− κ)ci1i2 = Rm2ci1i2 , (52)

where κ = k12[(1/Nm1)+(1/Nm2)]. As multiplying by Rm2

does not modify the norm of ci1i2 , and disregarding the case
κ = 2, that can be seen to correspond to a degenerate configu-
ration in which qi1i2 = ci1i2(Nm1−Nm2)/(Nm1+Nm2), see
(50), we clearly have that (52) can hold only if k12 = 0 and
Rm2 = I2 = Rm1 . Therefore, from (47), di1m1

= di2m1
.

Then, due to (40), these two vectors are null. This implies
dim1

= 0 ∀i ∈ Im1 and hence, substituting (22) in (4), we see
that γm1 = 0. Moreover, from (38), di1m2

= di2m2
= 0.

In search of global convergence guarantees, we formulate
the following assumptions regarding the formation graph:
A2) card(Im

∩
In) = 2 ∀{m,n} ∈ EC2 , Im

∩
In = ∅

otherwise (i.e., every intersection set of two maximal cliques
of Gf either contains exactly two agents, or is empty).
A3) Im

∩
In

∩
Ir = ∅,m ̸= n,m ̸= r, n ̸= r, m, n, r ∈

1, ..,M (i.e., the intersection sets between maximal cliques of
Gf are mutually disjoint).
A4) C2(Gf ) is a tree.

Note that we replace A1 by the stronger condition A4.
Clearly, Theorem 1 and Corollary 1 hold if A4 does. We
enunciate next our global stability result.

Theorem 2. Suppose A2-A4 are satisfied. Then, the multiagent
system under the control laws (24), for single-integrator kine-
matics, or (25), for unicycle kinematics, converges globally to
the desired configuration, and the attained formation is static.

Proof. We build on the development presented for Theorem
1, using the same Lyapunov candidate function V = γ. We
proceed by examining the possible stable equilibriums of the
system, and showing that they only include the case V = 0.
From Corollary 1, a stable equilibrium is characterized, for
the two kinematic models considered, by the condition di =
0, i = 1, ..., N . Let us assume this condition is satisfied.
Then, the rest of the proof relies on applying Lemma 1 to
pairs of nodes in C2(Gf ), i.e., pairs of maximal cliques in Gf .
Clearly, the assumption that all di = 0, A2, and A3 together
imply that conditions L1, L2 and L3 of Lemma 1 are always
satisfied for any pair of adjacent nodes in C2(Gf ). Thus, to see
if Lemma 1 is applicable to a given couple of nodes, we will
only need to check if L4 is satisfied. Consider then a given
leaf node l in C2(Gf ), which is a tree (A4), and its adjacent
node a. Denote Il

∩
Ia = {r1, r2}. Being a leaf node, and due

to A2, all the agents in l except r1 and r2 belong to maximal
clique l only, and thus their partial desired vectors satisfy, from
(23), dil = di = 0, i ∈ Il, i ̸= r1, i ̸= r2. Then, clearly, L4
holds and Lemma 1 can be applied to the pair l (in the role
of m1) and a (in the role of m2). This way, by extension, it is
ensured that for every clique m that is a leaf node of C2(Gf ),
γm = 0 and dim = 0 ∀i ∈ Im.

Let us define Cr
2(Gf ) as the induced subgraph of C2(Gf )

containing all its nodes except the leaves. Clearly, Cr
2(Gf ) is

also a tree. Let us consider any one of its leaf nodes, and
denote it as lr. We have:
1) For every agent i belonging only to lr, (i.e., Ci = {lr}),
from (23), dilr = di = 0.
2) Notice lr is adjacent to one or multiple leaves of C2(Gf ).
As we just showed, all the partial desired motion vectors
corresponding to leaf nodes of C2(Gf ) are null. Then, for the
agents i shared by lr and a leaf of C2(Gf ), di = dilr . Since
all di are assumed null, we have dilr = 0.
3) Being a leaf node of Cr

2(Gf ), lr is adjacent to exactly one
node, which we denote as ar, that is not a leaf node of C2(Gf ).
These two maximal cliques share two agents; let us denote
Ilr

∩
Iar = {rr1, rr2}.

As, clearly, points 1), 2) and 3) encompass all the agents
in clique lr, we have dilr = 0 ∀i ∈ Ilr , i ̸= rr1, i ̸= rr2.
Thus, we can apply Lemma 1 to lr (in the role of m1) and
ar (in the role of m2), since L4 holds for this pair of cliques.
In consequence, for every node m that is a leaf of Cr

2(Gf ),
γm = 0 and dim = 0 ∀i ∈ Im, i.e., the same result shown
above for the leaves of C2(Gf ).

It is then clear that we can consider subsequent induced
tree subgraphs of Cr

2(Gf ) and apply the reasoning above recur-
sively, until reaching a trivial case (a final, irreducible tree with
either one or two nodes). As a result, we have that γm = 0 for
all the nodes in C2(Gf ), i.e., for all the M maximal cliques. We
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can conclude, then, that if di = 0, i = 1, ..., N , i.e., if V̇ = 0
for all time (Corollary 1), it holds that γm = 0, m = 1, ...,M ,
i.e., V = 0. The converse is also true since V = γ = 0, see
(4), (6), implies di = 0, i = 1, ..., N (23). Hence, V̇ = 0
for all time ⇔ V = 0, i.e., the multiagent system converges
globally to the desired formation. In addition, from Corollary
1, the configuration the agents reach is static.

V. DISCUSSION OF VALID FORMATION GRAPH TOPOLOGIES

We analyze in this section the characteristics of Gf arising
from the introduced topological assumptions. Let us start by
considering A1. A formation graph satisfying this assumption
is illustrated in Fig. 3. Firstly, we note that A1 specifies a class
of graphs that are rigid in two dimensions. To see this, observe
first that a clique is a rigid graph. Assume the intersection
of every pair of maximal cliques of Gf corresponding to
adjacent nodes of C2(Gf ) contains exactly two nodes. Notice
then that, due to A1, Gf can be constructed, starting from
one of its maximal cliques, by applying successive edge-
attachment operations, as defined in [17], to incorporate all the
other maximal cliques. These operations consist in merging
an edge of each of two given graphs into a single edge of
a new graph that is a fusion of the two. In [17], it was
shown that such edge-attachment procedures generate a rigid
graph for two input graphs that are rigid. Thus, clearly, Gf is
rigid in two dimensions. If there are adjacent nodes in C2(Gf )
associated with maximal cliques of Gf which share more than
two nodes, one can always eliminate some of the edges to
obtain a subgraph of Gf for which the relevant maximal clique
intersections are two-node, and thus the reasoning above also
applies. Note that not all rigid graphs satisfy A1.

As shown in the previous section, global convergence to the
desired formation is guaranteed for any formation graph whose
topology conforms with A2-A4. Clearly, this augmented set of
assumptions also implies the graph is rigid in two dimensions.
The class of rigid graphs satisfying A2-A4 is illustrated with
four exemplary topologies, containing maximal cliques of
up to six agents, in Fig. 4. Observe that the specification
resulting from these assumptions provides flexibility, as it
allows structures that are made up from maximal cliques of
different sizes, and can be extended to arbitrary numbers of
nodes. For instance, the chained structure in bottom-left of
the figure can be prolonged to contain any number of four-
node maximal cliques, and a more general topology with
heterogeneous maximal cliques, such as the example depicted
in the center, is also arbitrarily extendable. Observe that,
regardless of the total number of nodes in Gf , any given agent
only has to interact with (i.e., measure the relative position of)
a small number of neighbors, which indicates the distributed
and partial information-based nature of our controller. We
require a denser (i.e., with more edges) formation graph
than distance-based formation controllers, which are valid for
general rigid graphs, but let us note that as the number of
agents grows, the minimum number of edges we need is in
the same order as the number of edges in a minimally rigid
graph.

Fig. 4. Four examples of formation graph topologies satisfying assumptions
A2-A4, i.e., for which the proposed controller is provably globally stable.

VI. SIMULATIONS

In this section, the effectiveness of our controller is illus-
trated in simulation. In our tests, we considered that a sensing
or communication infrastructure in the team of agents allowed
each of them to measure the relative positions of its neighbors
in Gf , as commented in Section II. We first present results from
an example where the desired formation was composed of
twelve unicycle agents arranged in two concentric circles. The
formation graph Gf consisted of five maximal cliques, each
containing four agents, with the chained structure depicted in
bottom-left of Fig. 4. Figure 5 displays the paths followed by
the agents using our proposed controller, showing how they
reach the formation from an arbitrary initial configuration.
The control law was computed for each agent in a local
reference frame aligned with its heading. Observe that the
final group shape has arbitrary translation and rotation in
the workspace. Notice as well that the final headings of the
agents are arbitrary. It would be straightforward to control
these headings, if desired, by making the agents rotate in
place once the formation has been attained. We also display
in the same figure the linear and angular velocities of the
agents and the evolution of the angles, expressed in a common
reference frame, of the rotation matrices Rm for the five
maximal cliques. It can be observed that the angles converge
to a common value as the formation is achieved. The vanishing
global and partial cost functions are also depicted.

We also illustrate a second example where a group of forty
agents was considered. This time, the agents obeyed the single-
integrator kinematic model. The simulation results for this
example are displayed in Fig. 6. The geometry of the rigid
desired formation and the edges of the formation graph Gf ,
which consisted of eighteen maximal cliques of sizes ranging
from three to six agents, are shown. Notice that this graph
also belongs to the class defined by assumptions A2-A4, for
which our controller guarantees global formation stabilization.
Since single-integrator agents do not have a defined heading,
we computed the control law considering for each agent an
arbitrarily oriented local reference frame. The paths followed
by the agents when using our proposed controller illustrate
their successful convergence to a pattern having the same
shape and size as the desired one. We also display the norms
of the instantaneous velocity vectors ui, the cost functions,
and the angles of the rotation matrices for each of the maximal
cliques. These angles, expressed in a common reference frame,
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Fig. 5. Simulation results for the twelve-agent example. Top row: Paths
followed by the agents; the final positions are shown joined by dashed lines
(left). Desired geometric configuration; adjacent agents in the formation graph
are joined by lines (right). Middle row: Evolution of the linear (left) and
angular (right) velocities of the agents. Bottom row: Evolution of the rotation
matrix angles for the maximal cliques (left). Evolution of the maximal-clique
cost functions γm and the global γ, which is plotted in a thicker line (right).

converge to a common value as the rigid desired formation is
attained.

VII. CONCLUSION

We have presented a distributed control method to stabilize
a set of mobile agents to a rigid formation. To alleviate
the need for the agents to rely on centralized sensing or
shared reference systems, we have proposed a coordinate-
free approach which can be implemented using only partial
relative position information measured locally. Our controller
can be used on unicycle-type platforms and has been shown
to be globally stable for a class of rigid formation graphs.
Possible directions for future work include addressing a similar
distributed stabilization problem in 3D space, where rigidity-
related graph conditions are in general more complex to
characterize. In addition, it can be interesting to study the
case where the formation graph is considered to change
dynamically as the agents move.
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